FaIR: Finite Amplitude Impulse Response simple climate model

FaIR is a reduced-complexity climate model useful for scenario assessment and idealised climate runs.


Indices and tables



Cummins, D. P., Stephenson, D. B., & Stott, P. A. (2020). Optimal Estimation of Stochastic Energy Balance Model Parameters, Journal of Climate, 33(18), 7909-7926.


Etminan, M., Myhre, G., Highwood, E.J., Shine, K.P., (2016). Radiative forcing of carbon dioxide, methane, and nitrous oxide: A significant revision of the methane radiative forcing, Geophysical Research Letters, 43, 12,614–12,623


Geoffroy, O., Saint-Martin, D., Bellon, G., Voldoire, A., Olivié, D. J. L., & Tytéca, S. (2013). Transient Climate Response in a Two- Layer Energy-Balance Model. Part II: Representation of the Efficacy of Deep-Ocean Heat Uptake and Validation for CMIP5 AOGCMs, Journal of Climate, 26(6), 1859-1876


Leach, N. J., Jenkins, S., Nicholls, Z., Smith, C. J., Lynch, J., Cain, M., Walsh, T., Wu, B., Tsutsui, J., and Allen, M. R. (2021). FaIRv2.0.0: a generalized impulse response model for climate uncertainty and future scenario exploration. Geoscientific Model Development, 14, 3007–3036


Meinshausen, M., Nicholls, Z.R.J., Lewis, J., Gidden, M.J., Vogel, E., Freund, M., Beyerle, U., Gessner, C., Nauels, A., Bauer, N., Canadell, J.G., Daniel, J.S., John, A., Krummel, P.B., Luderer, G., Meinshausen, N., Montzka, S.A., Rayner, P.J., Reimann, S., Smith, S.J., van den Berg, M., Velders, G.J.M., Vollmer, M.K., Wang, R.H.J. (2020). The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500, Geoscientific Model Development, 13, 3571–3605.


Millar, R. J., Nicholls, Z. R., Friedlingstein, P., and Allen, M. R. (2017) A modified impulse-response representation of the global near-surface air temperature and atmospheric concentration response to carbon dioxide emissions. Atmospheric Chemistry and Physics, 17, 7213–7228.


Myhre, G., Highwood, E.J., Shine, K. Stordal, F. (1998). New estimates or radiative forcing due to well mixed greenhouse gases. Geophysical Research Letters, 25 (14), 2715-2718.


Skeie, R.B., Myhre, G., Hodnebrog, Ø., Cameron-Smith, P.J., Deushi, M., Hegglin, M.I., Horowitz, L.W., Kramer, R.J., Michou, M., Mills, M.J., Olivié, D.J., Connor, F.M., Paynter, D., Samset, B.H., Sellar, A., Shindell, D., Takemura, T., Tilmes, S., Wu, T., 2020. Historical total ozone radiative forcing derived from CMIP6 simulations, npj Climate and Atmospheric Science, 3, 1–10.


Stevens, B. (2015). Rethinking the Lower Bound on Aerosol Radiative Forcing, Journal of Climate, 28(12), 4794-4819.


Thornhill, G.D., Collins, W.J., Kramer, R.J., Olivié, D., Skeie, R.B., O’Connor, F.M., Abraham, N.L., Checa-Garcia, R., Bauer, S.E., Deushi, M., Emmons, L.K., Forster, P.M., Horowitz, L.W., Johnson, B., Keeble, J., Lamarque, J.-F., Michou, M., Mills, M.J., Mulcahy, J.P., Myhre, G., Nabat, P., Naik, V., Oshima, N., Schulz, M., Smith, C.J., Takemura, T., Tilmes, S., Wu, T., Zeng, G., Zhang, J. (2021). Effective radiative forcing from emissions of reactive gases and aerosols – a multi-model comparison, Atmospheric Chemistry and Physics, 21, 853–874


Tsutsui (2017): Quantification of temperature response to CO2 forcing in atmosphere–ocean general circulation models. Climatic Change, 140, 287–305